$\Delta\Gamma_{B_s}$ beyond the Standard Model

Ulrich Nierste Fermilab

Outline

- 1. $B_s \overline{B}_s$ mixing basics
- 2. New physics in $\Delta\Gamma_{\rm B_s}$
- 3. Lifetime measurements in $b \rightarrow s\overline{s}s$ decays
- 4. How to measure $\operatorname{sgn} \Delta \Gamma_{B_s}$
- 5. Summary

$B_{\rm s} - \overline{B}_{\rm s}$ mixing basics

Schrödinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{pmatrix} = \left(M - i\frac{\Gamma}{2}\right) \begin{pmatrix} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{pmatrix}$$

where $B_s \sim \overline{b}s$ and $\overline{B}_s \sim b\overline{s}$.

3 physical quantities in $B_s - \overline{B}_s$ mixing:

$$|M_{12}|, \quad |\Gamma_{12}|, \quad \phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

Two mass eigenstates:

Lighter eigenstate: $|B_L\rangle = p|B_s\rangle + q|\overline{B}_s\rangle$.

Heavier eigenstate: $|B_H\rangle = p|B_s\rangle - q|\overline{B}_s\rangle$ with $|p|^2 + |q|^2 = 1$.

with masses $M_{L,H}$ and widths $\Gamma_{L,H}$.

Relation of Δm and $\Delta \Gamma$ to $|M_{12}|$, $|\Gamma_{12}|$ and ϕ :

$$\Delta m = M_H - M_L \simeq 2|M_{12}|, \qquad \Delta \Gamma = \Gamma_L - \Gamma_H \simeq 2|\Gamma_{12}|\cos\phi$$

 M_{12} stems from the dispersive (real) part of the box diagram, internal (\bar{t}, t) .

 Γ_{12} stems from the absorpive (imaginary) part of the box diagram, internal (\overline{c}, c) . (u's are negligible).

 Γ_{12} stems from final states common to B_s and \overline{B}_s .

Crosses: Effective $|\Delta B| = 1$ operators from W-exchange.

 Γ_{12} is a CKM-favored tree-level effect associated with final states containing a (\overline{c}, c) pair.

$\Delta\Gamma$ in the Standard Model

Standard Model:

CP-violating phase $\phi=\arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$ negligibly small. Identify mass eigenstates with CP eigenstates:

$$|B_L\rangle = |B_s^{\text{CP-even}}\rangle = \frac{1}{\sqrt{2}} [|B_s\rangle - |\overline{B}_s\rangle]$$

 $|B_H\rangle = |B_s^{\text{CP-odd}}\rangle = \frac{1}{\sqrt{2}} [|B_s\rangle + |\overline{B}_s\rangle]$

Measurements

Time evolution of any decay of an untagged ${}^{(}\overline{B}_{s}^{\,)} \to f$ decay:

$$\Gamma[f,t] \propto |\langle f | B_L \rangle|^2 e^{-\Gamma_L t} + |\langle f | B_H \rangle|^2 e^{-\Gamma_H t}$$

In the Standard Model the $b \to \overline{c}cs$ decay amplitude has approximately the same CP phase as M_{12} . Consider $f = (J/\psi\phi)_{L=0}$ (i.e. S-wave), which is CP-even:

$$\langle (J/\psi\phi)_{L=0} | B_H \rangle = \langle (J/\psi\phi)_{L=0} | B_s^{\text{CP-odd}} \rangle = 0$$

 \Rightarrow Lifetime measured in $(\overline{B}_s) \to (J/\psi\phi)_{L=0}$ determines Γ_L .

Next consider a decay which is flavor-specific, i.e.

$$\overline{B}_s \not\to f$$
 and $B_s \not\to \overline{f}$.

Examples: $B_s \to X \ell^+ \nu_\ell$ or $B_s \to D_s^- \pi^+$. Then $|\langle f | B_L \rangle| = |\langle f | B_H \rangle|$ and $\Gamma[f,t] \propto e^{-\Gamma_L t} + e^{-\Gamma_H t}$

- \Rightarrow Lifetime measured in $(\overline{B}_s) \to (J/\psi\phi)_{L=0}$ determines a weighted average of Γ_L and Γ_H .
- \Rightarrow combine both measurements to find $\Delta\Gamma$.

Or use theory input:

$$\Gamma_{B_s} \equiv \frac{\Gamma_L + \Gamma_H}{2} = \Gamma_{B_d} + \mathcal{O}(1\%)$$

to determine $\Delta\Gamma$ only from Γ_L measured in ${}^{(}\overline{B}_s^{\,)} o (J/\psi\phi)_{L=0}$ via

$$\Gamma_L - \Gamma_{B_s} = \frac{\Delta\Gamma}{2}$$

Or determine Γ_H from a lifetime measurement from decays to the CP-odd final state $(J/\psi\phi)_{L=1}$ (i.e. P-wave) to find:

$$\Gamma_L - \Gamma_H = \Delta \Gamma$$

2. New physics in $\Delta\Gamma_{\rm B_s}$

 Γ_{12} is a tree-level quantity and is difficult to change significantly in models of new physics. Assume first $\Gamma_{12} = \Gamma_{12,SM}$.

Then new physics can only enter $\Delta\Gamma$ via $\cos\phi$. Two effects:

- $\Delta\Gamma = 2 |\Gamma_{12}| \cos \phi = \Delta\Gamma_{\rm SM} \cos \phi$.
- ullet $|B_L\rangle$ and $|B_H\rangle$ are no more CP eigenstates.
 - \Rightarrow both $|B_L\rangle$ and $|B_H\rangle$ can decay into $(J/\psi\phi)_{L=0}$
 - \Rightarrow the lifetime measured in $(\overline{B}_s) \to (J/\psi\phi)_{L=0}$ is no more $1/\Gamma_L$.

Recall that for an untagged $(\overline{B}_s) \to f$ decay:

$$\Gamma[f,t] \propto |\langle f | B_L \rangle|^2 e^{-\Gamma_L t} + |\langle f | B_H \rangle|^2 e^{-\Gamma_H t}$$

For a $b \to c\bar{c}s$ decay into a CP-even final state f_{CP+} (like $(J/\psi\phi)_{L=0}$):

$$\left| \langle f_{CP+} | B_L \rangle \right|^2 = \frac{1 + \cos \phi}{2} \left| \langle f_{CP+} | B_s^{\text{CP-even}} \rangle \right|^2$$
$$\left| \langle f_{CP+} | B_H \rangle \right|^2 = \frac{1 - \cos \phi}{2} \left| \langle f_{CP+} | B_s^{\text{CP-even}} \rangle \right|^2$$

while for the CP-odd final state f_{CP-} :

$$\left| \langle f_{CP-} | B_L \rangle \right|^2 = \frac{1 - \cos \phi}{2} \left| \langle f_{CP-} | B_s^{\text{CP-odd}} \rangle \right|^2$$
$$\left| \langle f_{CP-} | B_H \rangle \right|^2 = \frac{1 + \cos \phi}{2} \left| \langle f_{CP-} | B_s^{\text{CP-odd}} \rangle \right|^2$$

Thus seeing two exponentials in ${}^{'}\overline{B}^{\,)}_s \to (J/\psi\phi)_{L=0}$ implies new physics. In practice this is very difficult.

A maximum likelihood fit of

$$\Gamma[f,t] = A e^{-\Gamma_L t} + B e^{-\Gamma_H t}$$

to a single exponential

$$e^{-\Gamma_f t}$$

converges to

$$\Gamma_f = \frac{A/\Gamma_L + B/\Gamma_H}{A/\Gamma_L^2 + B/\Gamma_H^2}$$

Hartkorn, Moser 1999; Dunietz, Fleischer, U.N. 2000

Expand to second order in $\Delta\Gamma$:

$$\Gamma_f = \Gamma + \frac{A - B}{A + B} \frac{\Delta \Gamma}{2} - \frac{2AB}{(A + B)^2} \frac{(\Delta \Gamma)^2}{\Gamma} + \mathcal{O}\left(\frac{(\Delta \Gamma)^3}{\Gamma^2}\right)$$

For a $b o c\overline{c}s$ decay ${}^{(}\overline{B}_{s}^{\,)} o f_{CP\pm}$ find

$$\frac{A-B}{A+B} = \pm \cos \phi$$

Hence the $\Delta\Gamma$ measurement from ${}^{(}\overline{B}_{s}^{\,)} o (J/\psi\phi)_{L=0}$ really determines

$$\Delta\Gamma'_{\rm CP} \equiv \Delta\Gamma \cos\phi = \Delta\Gamma_{\rm SM} \cos^2\phi$$

Grossman 1996, Dunietz, Fleischer, U.N. 2000

 \Rightarrow Using the theory prediction for $\Delta\Gamma_{\rm SM}$ the Tevatron measurements of $\Delta\Gamma'_{\rm CP}$ constrain the allowed range of $|\cos\phi|$.

Further the measurements yield no information on the sign of $\Delta\Gamma$.

So a tight upper bound on $|\Delta\Gamma|$ can establish $\phi \neq 0$ and establish new physics. Conversely if experimentally $|\Delta\Gamma| > 0$ is established, models of new physics are constrained, because regions near $\phi = \pi/2$ and $\phi = -\pi/2$ will be excluded. In the generic MSSM this constrains the phases of flavor-changing elements of the squark mass matrices as a function of the gluino and squark masses.

In the Standard Model have

$$B_L = B_s^{\text{short-lived}} = B_s^{\text{CP-even}}$$

 $B_H = B_s^{\text{long-lived}} = B_s^{\text{CP-odd}}$

In the presence of new physics the short-lived eigenstate has always a larger CP-even component than the long-lived eigenstate. However,

for
$$\cos \phi > 0$$
: $B_L = B_s^{\rm short-lived}$, and $B_H = B_s^{\rm long-lived}$, for $\cos \phi < 0$: $B_L = B_s^{\rm long-lived}$, and $B_H = B_s^{\rm short-lived}$,

Hence for ${}^{(}\overline{B}_{s}^{\,)} o (J/\psi\phi)_{L=0}$:

$$\Gamma[f_{CP+}, t] \propto \frac{1 + \cos\phi}{2} e^{-\Gamma_L t} + \frac{1 - \cos\phi}{2} e^{-\Gamma_H t}$$

$$= \frac{1 + |\cos\phi|}{2} e^{-\Gamma_{\text{short}} t} + \frac{1 - |\cos\phi|}{2} e^{-\Gamma_{\text{long}} t}$$

Again this show that no information on $\operatorname{sgn}\,\cos\phi=\operatorname{sgn}\Delta\Gamma$ is gained.

3. Lifetime measurements in $b \rightarrow s\overline{s}s$ decays

A combined fit to CP asymmetries in rare hadronic $b \to s\overline{q}q$ decays measured at BaBar and BELLE indicates a deviation from the Standard Model by 3.8 σ (O. Tajima, Aspen 2005).

Consider a new CP phase σ in the $b\to s\overline{s}s$ decay. Let now $\overline{B}_s\to f_{CP+}$ denote a $b\to s\overline{s}s$ decay into a CP-even final state, e.g. $f_{CP+}=(\phi\phi)_{L=0}$. With

$$\langle f_{CP+} | B_s \rangle \propto e^{i\sigma}$$
 and $\langle f_{CP+} | \overline{B}_s \rangle \propto -e^{-i\sigma}$

the coefficients in

$$\Gamma[f,t] \propto |\langle f | B_L \rangle|^2 e^{-\Gamma_L t} + |\langle f | B_H \rangle|^2 e^{-\Gamma_H t}$$

read:

$$|\langle f_{CP+} | B_L \rangle|^2 \propto \frac{1 + \cos(\phi + 2\sigma)}{2}, \qquad |\langle f_{CP+} | B_H \rangle|^2 \propto \frac{1 - \cos(\phi + 2\sigma)}{2}$$

$$\Gamma[f_{CP+},t] \propto \frac{1+\cos(\phi+2\sigma)}{2}e^{-\Gamma_L t} + \frac{1-\cos(\phi+2\sigma)}{2}e^{-\Gamma_H t}$$

For the Standard Model case $\phi = \sigma = 0$ only B_L can decay into f_{CP+} and the lifetime measured in e.g. $(\overline{B}_s) \to (\phi\phi)_{L=0}$ determines Γ_L .

If the lifetime measured in $(\overline{B}_s) \to (\phi\phi)_{L=0}$ is longer than the one measured in $(\overline{B}_s) \to (J/\psi\phi)_{L=0}$, new physics in the $b \to s\overline{s}s$ decay amplitude is established through $\sigma \neq 0$, with the possibility of $\phi = 0$ or $\phi \neq 0$.

If the lifetime measured in $(\overline{B}_s) \to (\phi\phi)_{L=0}$ is shorter than the one measured in $(\overline{B}_s) \to (J/\psi\phi)_{L=0}$, new physics in both the $b \to s\overline{s}s$ decay amplitude and $B_s - \overline{B}_s$ mixing is established through $\sigma \neq 0$ and $\phi \neq 0$.

The same argument applies to the $b \to s \overline{u} u$ amplitude triggering $(\overline{B}^{\,)}_s \to K^+ K^-$ except that here a small tree amplitude is present, so that $\sigma \neq 0$ already in the Standard Model.

4. How to measure $\operatorname{sgn} \Delta \Gamma_{B_s}$

The Tevatron analysis of ${}^{^{()}}\!\overline{B}_s^{^{()}} o J/\psi \phi$ determines

$$\Delta\Gamma'_{\rm CP} \equiv \Delta\Gamma \cos\phi = \Delta\Gamma_{\rm SM} \cos^2\phi.$$

This can, in principle, determine $|\cos\phi|$ leaving ϕ with a four-fold ambiguity in ϕ . A measurement of the semi-leptonic CP asymmetry in B_s decays can determine $\sin\phi$, leaving a two-fold ambiguity. Hence for an unambigous determination of ϕ we need $\operatorname{sgn}\cos\phi$.

An important subclass of models of new physics are scenarios with minimal flavor violation. In these models one has only two possibilities: $\cos\phi = +1$ or $\cos\phi = -1$, corresponding to $\Delta\Gamma > 0$ and $\Delta\Gamma < 0$.

Information on $\operatorname{sgn} \Delta \Gamma$ can be obtained from an angular analysis of the tagged decay $B_s \to J/\psi \phi$. This analysis involves time-dependent linear polarization amplitudes $A_0(t)$, $A_{||}(t)$ and $A_{\perp}(t)$. The angular distributions of the tagged decay involves

$$\operatorname{Im}\left[A_0^*(t)A_{\perp}(t)\right] \tag{1}$$

which contains a term

$$-\cos\delta_2\cos\phi\sin(\Delta mt)$$

where

$$\delta_2 = \arg \left[A_0(0)^* A_{\perp}(0) \right]$$

is a strong phase. Dighe, Dunietz, Fleischer 1998; Dunietz, Fleischer, U.N. 2000 Now $\cos \delta_2$ can be determined through $SU(3)_F$ symmetry from $B_d \to J/\psi K^* [\to \pi^0 K_S]$. While $SU(3)_F$ is not exact, it is sufficient to determine $\operatorname{sgn} \cos \delta_2$.

 $\Rightarrow \operatorname{sgn} \Delta \Gamma$ can be found.

5. Summary

- The lifetime analysis in $\overline{B}_s^0 \to J/\psi \phi$ determines $|\Delta\Gamma||\cos\phi| = \Delta\Gamma_{\rm SM}\cos^2\phi$. New physics can only diminish $\Delta\Gamma$. Experimentally excluding $\Delta\Gamma=0$ constrains the parameter space of e.g. supersymmetric models.
- Models of new physics with minimal flavor violation only allow $\cos\phi=\pm 1$. Determining $\operatorname{sgn}\Delta\Gamma=\operatorname{sgn}\,\cos\phi$ can be achieved from an angular analysis of the tagged decay $B_s\to J/\psi\phi$ in conjunction with $B_d\to J/\psi K^*[\to\pi^0K_S]$.
- Lifetime measurements in $(\overline{B}_s) \to \phi \phi$ or $(\overline{B}_s) \to K^+K^-$ can reveal a new CP-violating phase in $b \to s\overline{s}s$ or $b \to s\overline{u}u$ decays.